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The motion of isothermal vapour in a permeable rock is governed by a nonlinear 
diffusion equation for the vapour pressure. We analyse vapour flow described by this 
equation in both bounded and unbounded domains. We then apply these solutions to 
describe the controls on the rate of vaporization of liquid invading a hot permeable 
rock. In an unbounded domain, we determine asymptotic similarity solutions 
describing the motion of vapour when it is either supplied to or removed from the 
reservoir. Owing to the compressibility, these solutions have the property that vapour 
surfaces migrate towards the isobar on which the vapour has the maximum speed. 

In contrast, if vapour is supplied to or removed from a closed bounded system 
sufficiently slowly then the vapour density and pressure rapidly become approximately 
uniform. As more vapour is added, the mean pressure gradually increases and vapour 
surfaces become compressed. If liquid slowly invades a hot bounded porous layer and 
vaporizes, the vapour pressure becomes nearly uniform. As more liquid is added, the 
reservoir gradually becomes vapour saturated and the vaporization ceases. 

In an open bounded system, with a constant rate of vapour injection, the flux of 
vapour across the reservoir becomes uniform. If liquid is injected slowly and vaporizes 
then again the vapour flux becomes spatially uniform. However, the vapour flux now 
increases slowly as the liquid invades further into the rock, as a result of the decreased 
resistance to vapour flow from the interface to the far boundary. 

1. Introduction 
Geothermal power is generated from the vast reserves of thermal energy in the 

Earth’s crust by withdrawing hot fluids from geothermal reservoirs. These fluids are 
then passed through turbines to produce electricity or heat exchangers for domestic 
heating. The most effective geothermal power systems, such as in the Geysers, 
California and Larderello, Italy, draw vapour from vapour-saturated layers of hot 
fractured rock and permeable sediment, and extract the thermal energy by passing this 
vapour through turbines. 

Vapour-dominated geothermal reservoirs are naturally recharged as meteoric water 
percolates into the reservoir, is heated and vaporizes (Truesdell & White 1973). 
However, owing to the high rates of extraction of vapour for power generation, there 
has been a significant reduction in the fluid levels and pressures of certain geothermal 
reservoirs (Kerr 1991; Enedy 1989). This has reduced their ability to generate 
geothermal power and so many commercial operators have initiated active water 
injection programmes in an attempt to build up the reservoir pressures. As a 
consequence, there has been much interest in the nature of the fluid flows within such 
reservoirs (Pruess et al. 1987; Woods & Fitzgerald 1993). 

t Present address : Department of Petroleum Engineering, Stanford University, Stanford, 
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Hydrothermal systems are commonly thought to exist in a dynamic state in which 
fluid circulates within fractured porous rock (Cathles 1977; Donaldson 1962; Dunn & 
Hardee 1981; Hurst & Dibble 1981; Parmentier & Schedl 1981; Grant, Donaldson & 
Bixley 1982; Wohletz & Heiken 1992). In developing a model of such flows, one must 
characterize the microscopic flows through the fractures and pores in order to describe 
the macroscopic flows on the scale of a reservoir. The relative resistance to flow 
through fractures and pores is dependent upon the fracture apertures and spacing and 
the permeability of the porous matrix. Effects of the fractures upon the fluid flow 
within geothermal reservoirs are often inferred from detailed measurements of pressure 
and temperature within wells used for the extraction or injection of fluid (Fradkin, 
Sorey & McNabb 1981; Goyal & Box 1990; Axelsson & Bodvarsson 1987). In many 
reservoirs, such as Kawah Kamojang in Indonesia (Wohletz & Heiken 1992), The 
Geysers in California, Larderello in Italy, Ahuachapan in El Salvador and Kawerau 
in New Zealand (Grant et al. 1982), the majority of the fluid flows are believed to occur 
within the fractures. However, in other reservoirs, such as the East Mesa reservoir, 
California, the flows occur primarily within a porous matrix (Grant et al. 1982). In this 
work, we adopt a porous flow model to describe the transport of liquid and vapour. 
This model is particularly appropriate for this latter type of reservoir. However, the 
model also provides insight into the flows within highly fractured reservoirs. 

Using a porous matrix model, the volume flux per unit area u may be related to the 
interstitial velocity v by 

where q5 is the void fraction (Bear 1972; Phillips 1991). In many geothermal reservoirs 
the fluid velocities u through a geothermal reservoir are very low so that viscous 
frictional forces are much greater than the inertial forces, and the interstitial Reynolds 
number, R = pud/,u is small, R 4 1 (Rubin & Schweitzer 1972). Here p represents the 
density of the fluid which has values N lo3 and - 10 kg mP3 for liquid and vapour, ,u 
the dynamic viscosity which is - lop4 and - lop5 kg ms-l for liquid and vapour, d a 
typical pore size - lop4 m, and Y the interstitial speed. The condition R 4 1 is satisfied 
for liquid and vapour flows for interstitial speeds of Y < lop4 and Y < lop3 m s-l 
respectively. Previous studies of natural fluid circulation in geothermal reservoirs have 
shown that liquid velocities are typically less than lop6 m s-l (Donaldson 1962, 1968; 
Norton & Knight 1977; Cline, Bodnar & Rimstidt 1992) and so the flows are of low 
Reynolds number. In the case of low Reynolds number, the volume flux per unit area 
u is given by Darcy's law 

where V P  is the applied pressure gradient, g is the gravitational acceleration and k is 
the permeability (Bear 1972; Rubin & Schweitzer 1972; Dullien 1992). 

If the fluid speed Y and the typical grain size D are sufficiently small then the 
timescale for fluid and solid to thermally equilibrate, D'/K, is much shorter than the 
timescale for the advection of heat across a grain, D / Y ,  and the medium becomes 
locally isothermal. Thus for a typical grain size of 0.5 mm, the condition for local 
thermal equilibrium is the same as that for low-Reynolds-number flows, Y d lop3 m s-l 
since typically the thermal diffusivity of rock K - 2 x lop6 m2 s-l. 

For simplicity, geothermal reservoirs are often modelled as being isotropic (Dullien 
1992; Phillips 1991). This approximation is appropriate if in addition to the limits on 
fluid velocity mentioned above, there is no large-scale alignment of fractures to provide 
preferred flow directions. Although a simplification, such models provide useful insight 
into many of the underlying processes. 

u = q5v, (1) 

,UU = -k(VP-pg) ,  (2) 
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In the following analysis we assume that the rock may be modelled as an isotropic 
porous medium in which Darcy’s law (2) is valid and in which the rock and fluid are 
in local thermal equilibrium. Although a simplification of the real situation, the 
model provides a framework in which many of the underlying controls on the 
macroscopic fluid flows within geothermal reservoirs may be understood. The general 
principles can then be applied to interpret results of more complex models of the 
microscopic flow. 

Using such a model for the microscopic flow, in a previous paper (Woods & 
Fitzgerald 1993) we analysed the controls on the rate of vaporization of a liquid front 
injected into an unbounded hot vapour-saturated permeable rock. We presented 
similarity solutions to describe the rate of vapour generation if the liquid front 
advances at a rate proportional to t1I2. These solutions identified that as the flow rate 
increases, the fraction of liquid which vaporizes decreases. This is because at higher 
flow rates, the interfacial pressure required to drive new vapour ahead of the front 
increases. Therefore, in equilibrium, the interfacial temperature increases, reducing the 
heat released from the rock for vaporization. In the present paper, we build upon this 
work by examining the motion of isothermal vapour in one dimension in both bounded 
and unbounded domains. We use these results to investigate the different controls that 
the vapour motion can have on the rate of vaporization in a bounded domain. 

First, we describe the motion of vapour injected into a permeable rock, and 
distinguish between the self-similar flows which develop in an unbounded domain and 
vapour flow in a bounded region. We also identify the difference between the motion 
of vapour and pressure surfaces which migrate at quite different rates owing to the 
compressibility of the vapour. This is of importance when chemical or radioactive 
tracers are injected into geothermal reservoirs, since we show that changes in the 
pressure and flow rate may occur some time before any change in the fluid chemistry 
may be detected (D’Amore et al. 1977; Duchi, Minissale & Manganelli 1992; Martini 
et al. 1991). Next we show that when vapour is injected into a bounded domain 
sufficiently slowly, the vapour pressure becomes nearly uniform. We use this result to 
develop a spatially averaged model of the rate of vaporization of a liquid front 
migrating into a bounded hot porous layer, and successfully compare this with a full 
numerical model. Finally, we consider the simultaneous injection and extraction of 
vapour from a bounded porous rock. We show that once vapour has migrated across 
the reservoir, the mass flux through the reservoir becomes nearly uniform. Using this 
result, we develop a quasi-steady model to describe the vaporization of a liquid front 
slowly invading an open reservoir. By comparison with a full numerical model, we 
show that this quasi-steady model is very accurate for times greater than the time for 
the dynamic pressure signal to migrate across the reservoir. We conclude with a 
discussion of the relevance of our work to geothermal systems including estimates of 
the timescale for pressure build-up and for the migration of a liquid front through a 
model geothermal reservoir. 

2. Unbounded vapour flow 
In most cases of interest the pressure gradients VP within the vapour are significantly 

greater than the gravitational force pg and so the vapour moves with velocity u given 
by a simplified version of Darcy’s law (2) 

k 
P 

u = --VP, (3) 
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where, as before, k represents the permeability of the medium, ,u the dynamic viscosity 
of the vapour and P the pressure. Owing to the thermal inertia of porous layers 
(Bodvarsson 1972), the vapour remains approximately isothermal and the pressure is 
linearly related to the density p according to the equation of state 

P = p R , T  (4) 

where R, is the gas constant and T is the absolute temperature. Combining (3) and (4) 
with the conservation of mass 

(5 )  Cj5,+V*(pu) aP = 0 

one may derive the equation governing the pressure distribution associated with the 
migration of vapour (Elder 1981): 

V * ( P V P )  = 0, 
i3P k __-  
at  4P 

where the medium has porosity 4. In an unbounded reservoir, under certain 
conditions, the vapour motion may be described in terms of self-similar solutions. 
These provide useful insight into some features of vapour motion. 

In the main text, we restrict attention to one-dimensional flow solutions, as these 
reveal many of the important features of the flow. However, for completeness, in an 
Appendix, we describe vapour motion in other geometries. 

2.1. Injection or extraction at constant pressure 
For injection or extraction with constant pressure maintained at the source or sink, it 
is useful to introduce the dimensionless pressure p = (P-  P,)/(P,,, - Pmin). This is 
defined in terms of the maximum and minimum vapour pressures, P,,;and Pmin, 
which depend directly upon the imposed boundary conditions, and P,, the far-field 
pressure. In the case of injection, P,,, is the pressure at the source and Pmin = P, 
whereas in the case of extraction, P,,, = P, and Pmin is the pressure at the sink. 
Equation (6) may then be expressed as 

where p, = P,/(Pmax - Pmin) > 0 and the diffusion coefficient a = k(P,,, - Pmin)/$,u. 
To describe the injection of vapour at a constant pressure we set p = 1 at x = 0, and 
p --f 0 as x +a. Now (7) admits exact similarity solutions, p = p(r), with similarity 
variable T,I = x/2(at)'/', where p satisfies 

(Pm+P)P"+(P')'+2rP' = 0 (8) 

and the boundary conditions p(0) = 1 and p(m) = 0. In figure 1 we show numerical 
solutions for the self-similar vapour pressurep as a function of T,I/~:', for several values 
of the background pressure p,. As p, increases, the effective diffusion coefficient 
(p, +p) associated with the vapour motion becomes approximately constant and the 
self-similar pressure distribution tends top = erfc (r/pz') (dashed line). These solutions 
correspond to the injection of vapour into the reservoir at a rate Q(t/t*)-l/', where the 
flux 

Q = -P'(O)P, 4/(RT)' /2 (9) 
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FIGURE 1. The dimensionless pressure in the rock as a function of rl/p22 as vapour is injected at a 
constant pressure. The dashed line shows the distribution of pressure for the case in which pm -+ 00. 

The solid lines show the cases for ( a ) p ,  = 0.2, ( b ) p ,  = 0.5, ( c ) p m  = 1, ( d ) p ,  = 10 and = 100. 
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and the timescale 
t* = kP,/$R, Tp.  

In figure 2 we show that the flux P P / P L  increases with the injection pressure (the case 

To describe the extraction of vapour at a constant pressure, we set p = - 1 at 7 = 0 
and p + 0 as 7 + co. We also restrict attention to situations in which the total pressure 
remains positive, p, > 1. In figure 3 we show the self-similar distribution of vapour as 
a function of ~/p1, '~ as vapour is extracted at a constant pressure from the position 
7 = 0. As the magnitude of the background pressure,p,, increases, the vapour pressure 
distribution approaches the error function p = erf (7/pZ2) (dashed line). We also show 
in figure 2 the extracted flux, P P / P L ,  as a function of the extraction pressure (the case 

P(O)/P, ' 1). 

P(O)/P, < 1). 
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FIGURE 3. The dimensionless pressure in the rock as a function of as vapour is extracted at a 
constant pressure of p = 0. The dashed line shows the distribution of pressure for the case in which 
p ,  +a. The solid lines show the cases for (a) p, = 1.2, (b) p ,  = 1.5, (c)  p, = 2, ( d )  p ,  = 11 and (e)  
p ,  = 101. 

These solutions illustrate the asymmetry between injection and extraction of vapour. 
During vapour extraction, the pressure gradient and vapour speed decrease 
monotonically with y. During vapour injection, the pressure gradient has a minimum 
some distance ahead of the source, at 27  = -p’, and this corresponds to the point of 
maximum vapour speed. 

2.2. Motion of vapour surfaces and passive tracers 
The self-similar solutions reveal the difference between the motion of isobars and 
actual vapour surfaces. The vapour originally in place in the reservoir must be 
displaced through compression before new vapour can invade the reservoir. By 
identifying the regions of space in which the vapour is compressed and in which the 
vapour can expand, we can identify the front of the new vapour as it invades the 
reservoir. 

According to the similarity solution, the position of the isobar p(7) is given by 

xi = 27(at)”2, (1 1) 

and has speed dx,/dt = 7(a/t)’I2. (12) 

The speed of the vapour is given by 

Therefore, at any fixed value of y, the relative speed of vapour and isobars is a constant 
multiple of the isobar speed. Near the source at y = 0, p’ < 0 and p” < 0. Therefore 
dx,/dt > dx,/dt and the vapour migrates relative to the isobars into regions of lower 
pressure. This corresponds to the decompression of the input vapour as it invades the 
reservoir. The similarity solution (figure 1) also shows that as 7 +oo, p‘ + 0 and so far 
from the source the isobars move more rapidly than the vapour, dxi/dt > dx,/dt. This 
corresponds to the compression of the vapour originally in place in the reservoir. There 
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FIGURE 4. The positions of tracer particles (thick solid lines) and isobars (thin solid lines) as a function 
of time as vapour is injected at a constant pressure into an unbounded volume of vapour-filled hot 
porous rock from a planar source. The position of the front of new vapour (dashed line) is shown for 
the case in which p ,  = 1. 

is a point, 7 = 7* say, at which the isobars and the vapour move with the same speed. 
This point corresponds to the leading edge of the new vapour as it advances into the 
reservoir. It follows from (12) and (13) that at this point, 7* = -&'(7*). In order that 
the vapour converges to the isobar p(q*), the vapour must have the maximum velocity 
at 7 = y*; that this is the case may be seen from (8), since p' attains its minimum at 

For illustration, in figure 4 we show how the positions of vapour surfaces (thick solid 
lines) and isobars (thin solid lines) vary as a function of time as vapour is injected into 
the rock at a constant pressure. The position of the front of new vapour, which 
corresponds to the position of the isobar p(7*) is shown by the dashed line. The newly 
input vapour, in the region 7 < 7*, decompresses and so vapour surfaces migrate into 
regions of lower pressure. The original vapour, in the region 7 > q*, is compressed. As 
a result, changes in reservoir pressure occur before new vapour reaches any particular 
point. 

The pressure at the front of the input vapour varies as a function of the far-field 
pressure, p m  (figure 5) .  In general, if the background pressure is low, p ,  < 1, there is 
relatively little original vapour in the reservoir and so the pressure at the front of new 
vapour is similar to the background value, p N 0. In contrast, if the amount of vapour 
initially in place is large, p ,  9 1, then much of the pressure difference between the 
injection point and the far field is used to compress the original vapour. Consequently, 
the dimensionless pressure of the leading edge of new vapour is relatively high and at 
any point in the reservoir the time delay between changes in pressure and the arrival 
of new vapour is large. For the example shown in figure 4, p ,  = 1, and at the front of 
new vapour p - 0.7. 

T*. 

2.3.  Asymptotic similarity solutions for injection 
In the limit of negligible background pressure, P 9 P,, equation (7) has the asymptotic 
form 
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FIGURE 5. Pressure at the leading edge of the new vapour 7 = 1;1* as a function 
of the reservoir pressure p, .  

In this case, there is a much wider class of asymptotic similarity solutions of the form 

which describe the injection of vapour at a rate Q(t/t*)Y. Here the pressure scale P, is 
given by 

For convenience we have chosen the length- and timescales, L and t*, as those 
corresponding to vapour flow with speed (R, T)'12 driven by the imposed flux so that 

Po = Q(R, T)'"/$. (16) 

L = kP,/($Pu(R, T>'/", (17) 

t* = kP,/(R, TP$), (18) 

with the dimensionless pressure defined asp  = P/P,. To satisfy (14) and the boundary 
condition at x = 0 that - ( k /pR ,  T )  PP, = Q(t/t*)Y, we require that /3 = +(y+2), o = 
+(2y+ 1) and that f is governed by the equation 

(19) 

In these asymptotic solutions f is subject to the boundary conditions f ( O ) f ' ( O )  = 1, 
A?,) = 0 and the integral constraint JFfdy = 1 where the location of the leading edge 
of the current at 7 = qe is determined as part of the solution. In these asymptotic 
solutions, the region 0 < 7 < re is filled with injected vapour, and beyond this point the 
vapour pressure is zero. These solutions are exact if the reservoir initially contains no 
vapour. If the reservoir initially contains vapour, with pressure P,, then the similarity 
solutions are valid either at short times t 6 (P,/P,)'/"t* for y < -: or at long times 
t $ (P,/P,)''"t* for y > -;. In the short time limit, there is a further restriction that 
y > - 1, in order that the mass flux is finite at t = 0. The case in which the input 
pressure is a constant, discussed in 52.1, corresponds to the case y = -f, for which we 
showed that the background pressure is non-negligible. 

By solving the full nonlinear diffusion equation using an implicit predictor-corrector 
method (Ames 1977), we have confirmed that the vapour pressure converges to these 

f f "  +p = +(y + 2) 7 f  + g2y + l)$ 
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FIGURE 6 .  Variation of the pressure ( P / < ) ( ~ * / z ) ~ ’ ~  within the reservoir as a function of the 
dimensionless position z = ( x / L )  ( t * / t ) * I 3 .  Curves (solid) calculated from the full numerical model are 
shown at several times, (a) (Po/P,)2(t/t*) = 0.1, (b)  1 and (c) 10 for comparison with the similarity 
solution (dashed line). 

self-similar solutions. For example, figure 6 illustrates the variation of dimensionless 
pressure as a function of the position across the reservoir at several times (P,/P,)3t/  
t* = 0.1 (a) ,  1 (b) and lO(c) as vapour is injected at a constant rate, y = 0. The figure 
shows that for t > t*(P,/Po)1/3, the full numerical solution (solid lines) for the pressure 
is very similar to the similarity solution (dashed line). These solutions cease to hold 
once the pressure reaches the saturation value. 

3. Vapour flow in a bounded domain 
In a finite domain, the similarity solutions identified in $2 cease to hold once the 

dynamic pressure signal has traversed the reservoir. We now analyse the longer-term 
evolution of the pressure within a bounded domain. We focus upon the case in which 
a constant flux of vapour is added to or removed from the reservoir. 

According to (7), the mass flux of vapour D, which may be transferred across a 
reservoir of initial background pressure P, and typical length L scales as D, - 
kP,(P, - P,)/(R, TpL), where P, is the saturation pressure coinciding with the reservoir 
temperature, and P, is the initial reservoir vapour pressure. 

After a diffusion time L2$p/(kP,), the pressure signal has reached the far boundary 
and the similarity solutions of $2 do not apply. If the mass flux of vapour across the 
reservoir D ,  far exceeds the imposed flux at the source, Q, so that 

then the vapour pressure in the reservoir becomes nearly uniform. We have solved the 
full nonlinear diffusion equation (7) for the case of steady injection of vapour at 
x = 0 and with no vapour flow through the far boundary of the reservoir at x = L. In 
figure 7 we show the numerical calculations (solid lines) of the variation with time 
of the dimensionless pressure, p = (P-  Pa)/(< - P,) at the point of injection of vapour, 
x = 0, and at the far boundary of the reservoir, x = L. In this figure, the dimension- 
less background pressure, p ,  = P,/(P, - P,) = 0.7, the dimensionless time is defined by 
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FIGURE 7. Numerical calculations of the variation of the pressure at the input and far end of the 
reservoir as a function of time for M = 0.1, 1 and 10 (solid lines). For comparison, the variations 
with time of the mean reservoir pressure as calculated from the spatially averaged model are also 
shown (dashed lines). 

T = t(kP,/L2p) and curves are shown for dimensionless steady mass fluxes M = 0.1, 
1 and 10 where M = QRg TpL/kP,(P,-P,). As more vapour is added to the domain, 
the pressure increases slowly throughout the reservoir, and becomes increasingly 
uniform. This is because as the mass of vapour in the rock increases, the average 
pressure in the rock also rises and therefore the effective coefficient of diffusion 
k(P, - P,)/($p) ( p  + p a )  increases. Consequently, for a fixed flux of vapour injected 
into the reservoir, the pressure gradients decrease with time and the vapour pressure 
becomes more uniform. 

For small injection rates, M 4 1, the supply of vapour becomes the rate-limiting 
process rather than the migration of vapour across the reservoir. Therefore, the 
pressure becomes approximately uniform long before saturation conditions are 
approached at the site of injection. The mean dimensionless pressure in the reservoir 
after vapour has been injected at a dimensionless rate M for a time T is 

P(T) = ~ M ( T ’ ) ~ T ’ .  (21) 

In figure 7 we also show how this spatially averaged pressure p varies (dashed lines) 
with time as vapour is injected at rates M = 0.1, 1 and 10. The full numerical solution 
illustrates that the differences between the injection pressure, the far boundary pressure 
and the mean reservoir pressure are negligible for slow injection. In this case, M = 0.1, 
the spatially averaged model is very accurate. Furthermore, the averaged model 
becomes more accurate with time since the effective diffusion coefficient increases with 
pressure (equation (6)),  and so for a given flux, the pressure gradients decrease. For 
more rapid injection ( M  % 1) the pressure gradients remain large, and so the pressure 
at the injection point continues to exceed the spatially averaged pressure. 

For sufficiently slow injection of vapour into a bounded domain, M 4 1, the 
pressure is approximately uniform so that as more vapour is added, the vapour 
becomes uniformly compressed. Therefore, the position of the front of new vapour x 
is approximately given by 

x / L  = F/(P+P,) .  (22) 
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As more vapour is added to the reservoir, the vapour pressure increases towards the 
saturation pressure, at which point the model ceases to hold. 

In the case of slow steady extraction of vapour from a reservoir, the dimensionless 
pressure in the reservoir may be written p = ( P -  P,)/(P, - P,), where P, is the pressure 
at the extraction site. If the dimensionless mass flux extracted from the reservoir is 
M(7), then the mean pressure is given by 

Again, if M 4 1 then the pressure becomes nearly uniform. However, in contrast to 
vapour injection, the effective coefficient of diffusion in this case decreases as the mass 
of vapour and reservoir pressure decrease. As a result, the pressure gradients increase 
with time, and the distribution of vapour pressure becomes less uniform. 

4. The injection of water into a bounded rock 
Vapour may be generated in geothermal reservoirs through the injection and 

subsequent vaporization of water (Schroeder et al. 1982). Pruess et al. (1987) and 
Woods & Fitzgerald (1993) studied the generation of vapour as water invades an 
unbounded hot porous layer. They showed that the rate of vaporization of the liquid 
is controlled by the self-similar motion of the vapour ahead of the interface. However, 
in $3 we showed that in a bounded domain, for sufficiently slow addition of vapour, 
the vapour distribution tends to become nearly uniform and the vapour flow ceases to 
be self-similar. We now apply these results to examine the controls on the generation 
of vapour through the injection of water into a bounded domain. 

If liquid is injected into a vapour-filled porous rock sufficiently rapidly, a sharp 
interface may develop between the liquid and vapour regions and we focus upon this 
case in the remainder of this paper (Fitzgerald & Woods 1994). If the temperature of 
the liquid is lower than the temperature of the hot vapour-filled rock then as the 
interface advances into the hot rock, it is cooled and the energy released is used to 
vaporize and heat up a fraction of the liquid. The fraction F of injected water that 
vaporizes is given by 

where h is taken to represent the specific enthalpy, C p  the specific heat capacity, 12: the 
saturation temperature associated with the pressure at the liquid-vapour interface ; 
subscript r denotes a property of the rock, subscript 00 a value in the superheated 
vapour zone, subscript u a property of the vapour and subscript w a property of the 
liquid water (Woods & Fitzgerald 1993). If we assume that the liquid and vapour are 
in thermodynamic equilibrium at the liquid-vapour interface then the pressure pi and 
temperature T are coupled by the Clapeyron relation, which has the approximate form 

(Haywood 1972) in the temperature range 150 < T < 240 “C, where x is a dimensional 
constant, with value 6.7 K ( m ~ ~ k g - ’ ) ~ . ~ ~ .  Equations (24) and (25) may be used to 
calculate the flux of new vapour produced at the interface and also the rate of advance 
of the liquid-vapour interface into the vapour region. The new vapour then migrates 
away from the interface towards the far boundary of the rock with the pressure 
distribution governed by the nonlinear diffusion equation (6). 

T(P) = xPy3 (25) 
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FIGURE 8. Numerical calculations of the variation of the pressure at the vaporizing interface and at 
the far end of reservoir as a function of time for dimensionless initial vapour fluxes M ,  = 0.1, 1 and 
10 (solid lines). For comparison, the variations with time of the mean reservoir pressure as calculated 
from the spatially averaged model are also shown (dashed lines). 

As in 93, a suitable scale for the vapour flux across the reservoir is kP,(P,-P,)/ 
(pLRg T) where P, denotes the saturation pressure of the reservoir associated with the 
initial temperature of the reservoir (equation (25)). If liquid invades the reservoir at 
the steady rate Q,, and a fraction F of this liquid vaporizes, then the dimensionless 
vapour flux produced at the liquid interface, M ,  may be written 

where M,  is the dimensionless liquid flux. As the liquid-vapour interface migrates into 
the reservoir, F and hence M evolve. 

If the liquid flux is small, M ,  4 1, and so M < 1. Therefore, the reservoir pressure 
will rapidly become nearly uniform. To test this hypothesis, we have solved numerically 
the full nonlinear diffusion equation describing the vapour motion ahead of the 
vaporizing front, (6) ,  coupled with the constraint of zero vapour flux through the far 
boundary at x = L and the boundary conditions (24) and (25) at the moving 
liquid-vapour interface. In our calculations, we have set the rate of injection of liquid 
at x = 0, M,, to be a constant, but note that the liquid-vapour interface advances more 
slowly than the interstitial speed of the liquid owing to the vaporization of the fraction 
F of the liquid. In figure 8 we present a full numerical calculation of the dimensionless 
pressure at the interface and at the far boundary of the domain as a function of the 
dimensionless time (solid lines), with dimensionless initial vapour flux M ,  = 0.1, 1 and 
10 where subscript o denotes an initial value. Dimensionless pressures are defined as in 
9 3 by p = (pi - P,)/(P, - P,). In figure 9 we show how the mass fraction vaporizing, F, 
varies with time in each of these cases as calculated from the full numerical model (solid 
lines). In the cases M,, = 0.1 and 1, we find that there is an initial adjustment to a nearly 
uniform pressure throughout the reservoir, which occurs over a dimensionless time 
O( 1) (see figure 8). The initial transient behaviour is similar to the steady injection and 
subsequent vaporization of liquid in an unbounded domain, as described by Woods & 
Fitzgerald (1993). This is because in one dimension, vapour is produced at the interface 
more rapidly than it can migrate ahead of the interface. Therefore, vapour accumulates 
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FIGURE 9. Variation of the mass fraction which vaporizes F as a function of time calculated using 
both the full numerical solution (solid lines) and the averaged model (dashed lines) for steady liquid 
injection with dimensionless initial vapour fluxes M ,  = 0.1, 1 and 10. 

ahead of the interface resulting in an increase in the interfacial pressure. In turn, this 
lowers the mass fraction of liquid which vaporizes (Woods & Fitzgerald 1993). 

After this transient, owing to the presence of the far boundary of the reservoir, the 
reservoir vapour pressure becomes nearly uniform and gradually increases towards the 
saturation value associated with the initial temperature of the reservoir. The mass 
fraction of the injected liquid which vaporizes therefore decreases towards zero (Figure 
9) because less thermal energy is removed from the rock as the vapour pressure 
increases (cf. Woods & Fitzgerald 1993). 

This numerical solution also shows that once M < 1, M remains small because as 
more vapour is added to the reservoir, the dimensionless reservoir pressure p = 
(P-  P,)/(P, - P,) increases and the mass fraction vaporizing F decreases (cf. Woods 
& Fitzgerald 1993). In the limit M 4 1, in which the reservoir pressure becomes nearly 
uniform, we may approximate the interfacial pressure p i  with the average reservoir 
pressure, p say. Using this approximation, F is given approximately from (24) and (25) 
evaluated at p ;  as the liquid continues to invade the rock, that part of the reservoir 
which contains vapour has approximate extent 

(1 - F@)) MJr‘) dr‘ 
L (27) 

and the mean vapour pressure is given by the conservation of mass: 

1; F@) Mw(7’) d7’ 
P(r> = > (28) 

1 - (1 - F@)) Mw(r’) dr‘ 1: 
where M,(r) is the dimensionless liquid mass flux. Furthermore, the location of the 
front of newly injected vapour, L,(7), is given approximately from the conservation of 
mass and of new vapour as 

= 1 (1 - F@)) M w ( ~ ’ )  d7’ + (1 - 1 (1 - F@)) M,(r’) dr’ 
L P +P, 
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We have solved this simple uniform-vapour-pressure model of the vaporization of a 
liquid front advancing into a hot porous reservoir (equations (24), (25), (27), (28)). In 
figure 8 ,  we compare the predictions of this simple time-dependent model with the full 
numerical solution of the nonlinear diffusion equation for the vapour flow. The dashed 
lines in figure 8 show the evolution of the mean reservoir pressure calculated using this 
uniform-pressure model. The numerical solution shows that in fact when the 
dimensionless vapour flux M ,  < 1, the spatially uniform model becomes very accurate. 
Indeed, the model becomes more accurate with time since, as the mean reservoir 
pressure increases, the effective diffusion coefficient (equation (7)) increases and so the 
difference between the interface and far-boundary pressure decreases (cf. 0 3). 

For larger initial fluxes of vapour, M ,  > 1, the vapour cannot migrate through the 
reservoir as rapidly as the new vapour is being produced. Thus the far-field pressure 
and hence average pressure is smaller than that at the interface. As a result, the 
averaged model predicts a larger rate of production of vapour than the full numerical 
model. Thus, the averaged model actually predicts that the reservoir becomes vapour 
saturated at an earlier time than predicted by the full numerical solution. 

5. Vapour flow in an open bounded reservoir 
In a number of geothermal systems, vapour may enter a reservoir through one 

boundary while venting from another. We now examine how a steady flow 
configuration in which there is no net flux of vapour into the reservoir becomes 
established. 

If vapour is injected at one boundary of a reservoir by raising the pressure to P,,, 
while vapour vents from a far boundary maintained at a low pressure, 4,. then high- 
and low-pressure regions initially diffuse into the reservoir independently. In figure 10, 
we illustrate this adjustment in the case in which the difference between the injection 
pressure and the original reservoir pressure equals the difference between the original 
pressure and the extraction pressure. The average pressure close to the injection site 
increases and the average pressure close to the extraction site decreases. As a result, the 
effective diffusion coefficient for the pressure distribution (cf. (6))  increases near the 
injection site and decreases near the extraction site. This produces a non-uniform 
pressure gradient which tends to a steady state over a dimensionless time 7 = 
p$L2/(k&,) of order unity. From (6 ) ,  this steady-state pressure distribution is given 
as the solution of 

with p(0) = 1 and p( 1) = 0, where the dimensionless pressure p(z)  and exit pressure p ,  
are defined as 

and the dimensionless position is given by z = x / L .  Thus the steady-state pressure 
profile is 

(32) p = -p ,  + <p; + (2p, + 1) (1 - Z ) y 2 .  

When the exit pressure is relatively large compared to the driving pressure (pin - e,), 
( p ,  9 l), the diffusion coefficient is nearly constant and p - 1 -z .  However, when the 
exit pressure p ,  is relatively small ( p ,  < 1) the effects of the nonlinear diffusion are 
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FIGURE 10. Variation of the dimensionless pressure in a porous medium as a function of distance x / L  
as vapour is simultaneously injected and extracted. Vapour is injected at a pressurep = 1 at x = 0 and 
extracted at a pressure p = 0 at x = L. The solid lines show the pressure profiles at dimensionless 
times (a) 2 x (b) 2 x ( d )  3 x lo-’ and (e) 8 x lo-’. The steady-state profile is 
shown by the dashed line. 

(c)  1 x 

dominant. In the limiting case p ,  + 0, the vapour pressure has the form p - (1 -z)l”. 
These solutions are useful for analysing the slow vaporization of liquid as it invades an 
open bounded porous region. 

6. The injection of liquid into an open bounded reservoir 
We now build upon $ 5  and examine a simple model of the interesting problem in 

which liquid is steadily injected through one boundary of a geothermal reservoir while 
vapour, generated at the moving liquid interface, vents from a far boundary at constant 
pressure, P,,. Following $4, we define the dimensionless vapour flux produced at the 
moving liquid-vapour interface to be 

where Q, is the steady liquid flux injected into the reservoir, and F is the mass 
fraction vaporizing. We also define the dimensionless time 7 = kP,, t/(pq5L2) and the 
dimensionless pressure p = (P- P,,)/(P, - P,,) where P, is the saturation pressure 
associated with the initial reservoir temperature. The vapour motion is governed by (6) ,  
and as in $4, the mass fraction vaporizing is given by (24) and (25). In figure 11, we 
present a full numerical solution of the pressure distribution across the reservoir at 
dimensionless times 0.01, 0.1 and 1 ,  again calculated using an implicit predictor- 
corrector method (Ames 1977). In this figure, the initial dimensionless vapour 
flux produced at the advancing liquid interface has value M ,  = 10.0, and the exit 
pressure is set equal to the initial reservoir pressure. 

During the initial transient, before the pressure signal associated with the new 
vapour has reached the far boundary of the reservoir, the mass fraction of injected 
liquid which vaporizes decreases. This initial transient is very similar to that described 
in $4, and the behaviour may be understood from the results of Woods & Fitzgerald 
(1993) who considered the case of an unbounded domain. However, once the pressure 
signal has reached the exit site, a quasi-steady state appears to become established in 
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FIGURE 11. Variation of pressure p as a function of distance x / L  as vapour is produced from a moving 
liquid-vapour interface, with liquid injected at a steady rate such that the initial flux of vapour has 
dimensionless value M ,  = 10. Pressure distributions are shown at times 7 = 0.01, 0.1 and 1. 

0.6 ! 1 

-4 -2 0 2 4 

1% (7) 
FIGURE 12. Variation of the fraction vaporizing as a function of dimensionless time 7 = kP,, t/#,uL2 
as liquid is steadily injected such that the dimensionless initial vapour flux has value M ,  = 0.1, 1 and 
10. 

which the vapour flux becomes nearly constant throughout the reservoir. From our 
numerical calculations, we then observe that as liquid continues to invade the reservoir, 
the size of the vapour region slowly decreases, the nearly uniform vapour flux slowly 
increases (figure 12), and the interface pressure slowly decreases (figure 13). 

This evolution of the quasi-steady system may be understood as follows. As the size 
of the vapour-saturated region decreases, the pressure difference between the interface 
and the exit site which is required to sustain a given vapour flux decreases. However, 
if the interfacial pressure decreases, the mass fraction which vaporizes tends to increase 
(Woods & Fitzgerald 1993). Therefore, since the exit pressure P,, is fixed, then, once 
the quasi-steady state becomes established, the interfacial pressure slowly decreases 
(figure 13) and the mass fraction which vaporizes slowly increases (figure 12). The 
process continues until the liquid interface has advanced to the far boundary of the 
reservoir, and the reservoir has become liquid saturated. 

In the limit that the cross-reservoir diffusion time is shorter than the time over which 
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FIGURE 13. Variation of the interfacial pressure as a function of dimensionless time 7 = kP,, t /@pL2,  
as calculated from the full numerical model (solid lines) and as calculated from the spatially averaged 
model (dashed lines). In these calculations, liquid is steadily injected such that the dimensionless 
initial vapour flux has value M ,  = 0.1, 1, and 10. 

the pressure at the liquid-vapour interface changes and also shorter than the time over 
which the size of the vapour-filled region, L,, changes, 

we expect that the vapour pressure distribution will approach a quasi-steady solution 
of the form of (32), corresponding to a spatially uniform vapour flux. In this case, we 
can develop a quasi-steady time-dependent model of the vapour production and 
migration in terms of the dimensionless interface position zi(7) and pressure pi(.) which 
slowly vary with time 7 as the liquid invades the reservoir. Following $ 5 ,  the quasi- 
steady pressure distribution within the vapour is given by 

P = -P, + ( ~ 2  + 2($i(7IZ +P, ~ i ( 7 ) )  (1 -Zi))”’, (3 5 )  
where the constant p ,  represents the dimensionless exit pressure p ,  = P,, / (P,  - I&). 
The interfacial pressure pi(.) may be determined by equating the two dimensionless 
expressions for the mass flux of vapour at the interface: 

where M ,  is the dimensionless liquid flux, the mass fraction vaporizing F = F(p,(7)) is 
given by (24), the size of the vapour-saturated region at dimensionless time 7 is 

1 - zi = (1 - F(7’)) M W ( f )  d7’ J: (37) 

and @/azJ,=zi is evaluated using (35). 
Equation (34) suggests that this quasi-steady model is valid when (l/p,)/dp,/(dz,) 4 1. 

From ( 3 9 ,  we may write pi(7) = p”,(z,) and so dp,/dr = (dpi/dzi)/(dzi/d7). Also, 
from (37) it follows that the vapour-filled region contracts at a rate (dzJd7 = 

M,(1 -F) .  Therefore, we expect the model to be valid when 
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Typically, this is the case if the flux of liquid M ,  6 1 .O. Condition (38) also has a weak 
dependence upon F, which typically lies in the range 0.1 < F < 0.8 and which varies 
with the superheat of the reservoir (Woods & Fitzgerald 1993). 

In order to test the validity of this quasi-steady model, we now compare a number 
of numerical solutions of the full model with the predictions of this simplified uniform 
flux model. In figure 13 we show how the interfacial pressure pi(7) varies with time for 
three values of the initial dimensionless vapour flux produced at the advancing liquid 
interface, M ,  = 0.1, 1.0 and 10.0. The solid lines denote the solution of a numerical 
model including the full time-dependent nonlinear pressure diffusion equation (7), 
while the dashed lines are the predictions of the quasi-steady uniform-flux model 
described above. With M ,  = 0.1, the quasi-steady model rapidly converges to the full 
numerical solution, once the pressure signal has migrated across the reservoir. This takes 
a dimensionless time of order unity. At longer times, the quasi-steady model is in very 
good agreement with the numerical solution. However, as expected from (38), for 
larger fluxes of vapour (e.g. M ,  = 1 .O, 10.0), the process remains transient since the rate 
of vapour production increases with time and so vapour is supplied to the moving 
liquid interface more rapidly than it can spread across the reservoir. 

7. Conclusions 
We have presented a series of models to describe the motion of vapour through a hot 

porous rock. First, we showed that, in an unbounded rock, the vapour migrates in a 
self-similar fashion from an injection site. Our similarity solutions also identified that 
the newly input vapour actually lags behind the pressure signal as a result of the 
compression of the original vapour in the reservoir. This is of import for monitoring 
geothermal systems, since at an observation well, a dynamic pressure signal will be 
observed before any geochemical changes resulting from differences between host and 
input fluids. These similarity solutions are complementary to those presented by 
Woods & Fitzgerald (1993) to describe the motion of a vaporizing liquid front as it 
invades an unbounded reservoir. 

Next we considered the injection of vapour into a bounded reservoir. We showed 
that in the limit that the injected vapour flux is small compared to the maximum flux 
of vapour which may migrate across the reservoir, the vapour pressure becomes 
approximately uniform. As vapour continues to invade the reservoir, the reservoir 
pressure then gradually increases towards saturation conditions. Also, since the vapour 
originally in place has to be compressed as new vapour enters the rock, new vapour 
does not actually reach the far boundary of the reservoir before the reservoir becomes 
saturated. Using these results, we have developed a simple time-dependent model of the 
vaporization of water slowly invading a hot bounded porous rock, based upon the 
assumption of a uniform vapour pressure, combined with the Stefan condition at the 
moving liquid-vapour interface. In accord with a full numerical calculation which 
accounts for the spatial distribution of the vapour, the approximate model shows that 
as the reservoir pressure increases, the rate of vaporization decreases, until the reservoir 
becomes vapour saturated. The steady decrease in the rate of vaporization is a result 
of the increase in interfacial temperature which accompanies the increase in interfacial 
pressure ; increasing the interfacial temperature reduces the thermal energy released by 
the hot rock as it is invaded by the liquid. 

Finally, we considered the case in which vapour is simultaneously injected into and 
extracted from a bounded rock. We showed that over the cross-reservoir diffusion time 
the mass flux of vapour becomes spatially uniform. We then developed this result to 
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show that if water is slowly injected into a bounded rock while vapour is simultaneously 
extracted from the far boundary, the system rapidly evolves to a quasi-steady state in 
which the vapour flux is spatially uniform. As the liquid continues invading the 
domain, this quasi-steady state gradually evolves. The mass fraction of liquid which 
vaporizes gradually increases because as the size of the vapour-filled region of the 
reservoir decreases, the interfacial pressure also decreases. This causes an increase in 
the mass fraction which vaporizes since more heat can be released from the host rock 
as the interfacial pressure and hence temperature decrease. In an Appendix, we extend 
the analysis to consider the production and migration of vapour in two-dimensional 
bounded reservoirs. Again, the spatially averaged model works well for a wide range 
of operating conditions. 

The models of vapour production and migration which we have developed in this 
paper are highly idealized, in order to focus upon the underlying physical controls. In 
geothermal reservoirs, the geometry of injection and extraction may be very complex, 
the reservoir may be spatially inhomogeneous and non-isothermal. Furthermore, if the 
mass fraction which vaporizes is sufficiently large, then the liquid vapour interface may 
become unstable (Fitzgerald & Woods 1994). However, noting the limitations, our 
simple models provide some important constraints on liquid and vapour flows in those 
geothermal reservoirs which may be described as porous media. For example, the 
upper depleted zones of the Larderello reservoir have typical properties P, - 30 bar, 
P, - 10 bar, k - kgm-2 s-l (Pruess et al. 1987). 
Therefore, for two-dimensional recharge (see the Appendix), the maximum cross- 
reservoir flux of vapour, which scales as 

m2 and vapour viscosity ,u - 

is of order 10-1-10-2 kg ms-l. Hence, the models of spatially uniform vapour or 
vapour flux described herein may be applied to situations in which the applied mass 
flux per unit depth Q < lop2 kg ms-l. For higher injection rates, the system evolves 
transiently, and a full numerical solution of the nonlinear diffusion equation for 
vapour flow is required. A simple application of the quasi-steady model describing the 
inflow of water and outflow of vapour (Appendix), suggests that a depleted zone of the 
Larderello geothermal reservoir of temperature 240 "C, radius 3 km, porosity 0.05, 
initial pressure 10 bar and permeability m2 may be used to produce vapour for 
a period of about 30 years if liquid is injected at a rate of lop2 kg ms-'. After this time 
the liquid front will have reached the far boundary of the zone. In contrast, zones 
which are of radius 1 km may be used for about 3 years while those of radial extent 
10 km may be used for approximately 300 years. 

M. G. Worster and J. R. Lister gave some useful comments on this work. This 
research was supported by NERC and A.W.W. acknowledges support from the GFD 
programme at WHOI. 

Appendix 
Many geothermal systems involve more complex flow geometries than the model 

one-dimensional flows described in this paper. In particular, flows with cylindrical 
geometry may be common, and so in this Appendix we extend the methods presented 
in this paper to describe the production and migration of vapour in a bounded 
cylindrical domain. 
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The vapour flux across a cylindrical surface of given radius, in a two-dimensional 
geometry, scales as 

per unit depth. If the rate of addition of water to the system is Q, per unit depth, then 
the dimensionless vapour flux at the advancing liquid-vapour interface may be written 

Q - k P A 4  - P,)/(PR, T )  (A 1) 

M = FM, = FQ,/Q, 

where F is the mass fraction of liquid which vaporizes. Note that in contrast to one- 
dimensional injection, for two-dimensional flow the parameter M is independent of the 
spatial scale. If M < 1, then vapour may migrate across the reservoir more rapidly than 
it is supplied through vaporization of liquid. In this limit, we expect two different 
vaporization regimes which depend upon whether the pressure signal associated with 
the new vapour has reached the far boundary of the reservoir (cf. $3). 

Woods & Fitzgerald (1 993) presented a family of similarity solutions which modelled 
the production of vapour as water spreads radially from a line source into an 
unbounded hot permeable rock. For a constant rate of injection, they showed that a 
constant fraction vaporizes and, therefore, that the position of the interface increases 
at a rate r = h(at)l/' where h is a constant and a is the effective diffusion coefficient 
a = k ( 4 -  P,)/($p).  The vapour pressure ahead of this front was shown to be a 
function of the similarity variable 7 = r/(at)''' and the vapour pressure satisfied the 
similarity equation (cf. (6)) 

For injection from a cylindrical well of finite radius, ri, the similarity solution is 
attained after an initial transient which lasts for a time of the order of t, = ri/a. In a 
bounded domain this similarity solution describes the vaporization until the pressure 
signal associated with the vapour reaches the far boundary of the reservoir. This occurs 
after a time of the order of t ,  = L'$p/(k(P,- P,)), where L is the spatial scale of the 
reservoir. Once the pressure signal reaches the far boundary, the vaporization process 
diverges from the similarity solutions. 

In the case of a closed bounded region, the vapour pressure becomes approximately 
uniform (cf. $5) and we may develop a simplified model by assuming that the vapour 
pressure is uniform. If the region occupied by the vapour has volume n(Z2-r;) per 
unit depth, then the average pressure increase associated with the production of new 
vapour is 

2r( 1 - F@)) MJ7) d7 
I"-; 

where 1 is the spatial scale of the reservoir and rf denotes the position of the 
liquid-vapour interface. The fraction which vaporizes may be found from (24) and 
(25). Since the mean vapour pressure increases with time, the rate of vaporization 
progressively decreases. As a result, the rate of advance of the liquid front steadily 
increases relative to the self-similar solution. These effects are illustrated in figure 
14(a, b), in which predictions of the full numerical solution (solid line) are compared 
with the similarity solution (dotted line) and the predictions of the spatially averaged 
model (dashed lines). For the model run, in these figures, the dimensionless time 
7 = t/t,, r i / L  = 0.04, t,/t, = 0.002, M ,  = 1.32 and F,M, = 1, where F, is the fraction 
vaporizing as predicted from the similarity solution. The full numerical solution 
converges rapidly to the similarity solution when 7 N O(O.01). However, once the 
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FIGURE 14. Variation of (a) the mass fraction vaporizing and (b) the position of the liquid-vapour 
interface as a function of time 7 for injection of liquid into a bounded and closed cylindrical reservoir 
in which LY = 0.06, r, /L = 0.04, t , / tb  = 0.002, M ,  = 1.32 and 4 M ,  = 1 where 4 is the mass fraction 
vaporizing as determined from the similarity solution. Solid lines represent the full numerical solution 
in the case that the initial pressure distribution is uniform, dotted lines are the similarity solution for 
an unbounded domain (Woods & Fitzgerald 1993) and dashed lines are the predictions of the model 
using a spatially averaged pressure. 

pressure signal has reached the far boundary, at time 7 - 0(1), the full solution 
becomes nearly indistinguishable from the spatially averaged model, up to the time at 
which the vapour becomes saturated (cf. 95). Further calculations show that, as 
expected, for A4 > 1 .O, the uniform-pressure model is less accurate, particularly in 
respect of the prediction of the mass fraction vaporized. 

In the case of an open boundary, the mean vapour flux across any cylindrical 
surface, centred on the injection well, becomes nearly independent of radius once 
the pressure signal associated with the vapour flux has reached the far boundary of 
the reservoir. The pressure distribution across the reservoir is then given by the 
approximate relation (cf. 96) 
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FIGURE 15. As figure 14 but for a bounded and open cylindrical reservoir. 

where A = r i / L  and i = ( r  - r%)/L.  As a consequence, the interfacial pressure begins to 
fall and the mass fraction of the liquid which vaporizes increases. Thus, the rate of 
vapour production increases and the interface advances more slowly then predicted by 
the similarity solution (cf. $6). The full numerical solution shown in figure 15 shows 
that the similarity solution applies for times t, < t < t,, while subsequently the 
uniform-flux model, (A5), gives a good representation of the process. Further 
numerical calculations suggest that the agreement improves as M decreases, and that 
again it is particularly good for M < 1. 

Similar models may be developed for the three-dimensional migration of vapour 
produced from a point source. 
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